11 research outputs found

    Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

    Get PDF
    We present detailed Raman studies of graphene deposited on gallium nitride nanowires with different variations in height. Our results indicate that different density and height of nanowires impact graphene properties such as roughness, strain, and carrier concentration as well as density and type of induced defects. Tracing the manifestation of those interactions is important for the application of novel heterostructures. A detailed analysis of Raman spectra of graphene deposited on different nanowire substrates shows that bigger differences in nanowires height increase graphene strain, while a higher number of nanowires in contact with graphene locally reduces the strain. Moreover, the value of graphene carrier concentration is found to be correlated with the density of nano wires in contact with graphene. The lowest concentration of defects is observed for graphene deposited on nanowires with the lowest density. The contact between graphene and densely arranged nanowires leads to a large density of vacancies. On the other hand, grain boundaries are the main type of defects in graphene on rarely distributed nanowires. Our results also show modification of graphene carrier concentration and strain by different types of defects present in graphene. Therefore, the nanowire substrate is promising not only for strain and carrier concentration engineering but also for defect engineering.This work was partially supported by the Ministry of Science and Higher Education in 2015-2019 as a research grant "Diamond Grant" (n degrees. DI2014 015744). The GaN nanowires were grown within the Polish National Science Centre (grants n degrees. UMO-2016/21/N/ST3/03381 and 2016/23/B/ST7/03745). This work was supported by the Research Foundation Flanders (FWO) under grant n degrees. EOS 30467715

    Electrostatically-induced strain of graphene on GaN nanorods

    Full text link
    Few-layer graphene deposited on semiconductor nanorods separated by undoped spacers has been studied in perspective for the fabrication of stable nanoresonators. We show that an applied bias between the graphene layer and the nanorod substrate affects the graphene electrode in two ways: 1) by a change of the carrier concentration in graphene and 2) by inducing strain, as demonstrated by the Raman spectroscopy. The capacitance of the investigated structures scales with the area of graphene in contact with the nanorods. Due to the reduced contact surface, the efficiency of graphene gating is one order of magnitude lower than for a comparable structure without nanorods. The shift of graphene Raman modes observed under bias clearly shows the presence of electrostatically-induced strain and only a weak modification of carrier concentration, both independent of number of graphene layers. A higher impact of bias on strain was observed for samples with a larger contact area between the graphene and the nanorods which shows perspective for the construction of sensors and nanoresonator devices

    New Derivatives of 5-((1-Methyl-Pyrrol-2-yl) Methyl)-4-(Naphthalen-1-yl)-1,2,4-Triazoline-3-Thione and Its Coordination Compounds with Anticancer Activity

    No full text
    A new ligand 5-((1-methyl-pyrrol-2-yl) methyl)-4-(naphthalen-1-yl)-1,2,4-triazoline-3-thione (C15) and its metal complexes with formulae: Mn(C15)Cl2MeOH (1), Fe(C15)Cl2MeOH (2), Ni(C15)Cl2MeOH (3), Cu(C15)2Cl2 (4) and Zn(C15)4Cl2 (5) have been synthesized. The C15 ligand and complexes were characterized by NMR, elemental analysis, FT-IR, EPR, magnetic and TGA studies. The anticancer activities of the organic ligand (C15) and complexes (1–5) were evaluated against human colon adenocarcinoma (HT29) and human lung (A549) cancer cell lines. The complex (1) exhibited potential activity at concentration of 794.37 μM (A549) and 654.31 μM (HT29) in both cancer cells. The complex (3) showed significant activity against the HT29 cancer cell line with an IC50 value of 1064.05 μM. This article highlights some of the metals that have become important in the development of new coordination complexes and the treatment of cancer. Additionally, for C15, the toxicity was predicted by ADMET analysis and molecular docking

    Optical Properties and Light-Induced Charge Transfer in Selected Aromatic C60 Fullerene Derivatives and in Their Bulk Heterojunctions with Poly(3-Hexylthiophene)

    No full text
    Fullerene derivatives offer great scope for modification of the basic molecule, often called a buckyball. In recent years, they have been the subject of numerous studies, in particular in terms of their applications, including in solar cells. Here, the properties of four recently synthesized fullerene C60 derivatives were examined regarding their optical properties and the efficiency of the charge transfer process, both in fullerene derivatives themselves and in their heterojunctions with poly (3-hexylthiophene). Optical absorption, electron spin resonance (ESR), and time-resolved photoluminescence (TRPL) techniques were applied to study the synthesized molecules. It was shown that the absorption processes in fullerene derivatives are dominated by absorption of the fullerene cage and do not significantly depend on the type of the derivative. It was also found by ESR and TRPL studies that asymmetrical, dipole-like derivatives exhibit stronger light-induced charge transfer properties than their symmetrical counterparts. The observed inhomogeneous broadening of the ESR lines indicated a large disorder of all polymer–fullerene derivative blends. The density functional theory was applied to explain the results of the optical absorption experiments

    Volumetric incorporation of NV diamond emitters in nanostructured F2 glass magneto-optical fiber probes

    No full text
    Integration of optically active diamond particles with glass fibers is a powerful method of scaling diamond's magnetic sensing functionality. We propose a novel approach for the integration of diamond particles containing nitrogen-vacancy centers directly into the fiber core. The core is fabricated by stacking the preform from 790 soft glass canes, drawn from a single rod dip-coated with submicron diamond particles suspended in isopropyl alcohol. This enables manual control over the distribution of nanoscale features, here – the diamond particles across the optical fiber core. We verify this by mapping the diamond distribution in the core using confocal microscopy. The particles are separated longitudinally by 12–29 μm, while in the transverse plane a separation of approximately 1.5–2.2 μm is observed, corresponding to the individual cane diameter in the final fiber, and without significant agglomeration. The fiber's magnetic sensitivity is confirmed in optically detected magnetic resonance recorded with a coiled, 60-cm-long fiber sample with readout contrast of 1.3% limited by microwave antenna coverage. Moreover, magnetic-field dependence of the NV─ fluorescence intensity is demonstrated in the absence of microwaves, allowing magnetometric applications with a large (from 0 to 35 mT) B-field dynamic range
    corecore